Weak Solution of Parabolic Complex Monge-ampère Equation

نویسنده

  • DO HOANG
چکیده

We study the equation u̇ = log det(uαβ̄)−Au+f(z, t) in domains of C. This equation has a close connection with the Kähler-Ricci flow. In this paper, we consider the case where the boundary condition is smooth and the initial condition is irregular.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS

This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .

متن کامل

The General Solution of the Complex Monge-Ampère Equation in a space of arbitrary dimension

A general solution to the Complex Monge-Ampère equation in a space of arbitrary dimensions is constructed.

متن کامل

The General Solution of the Complex Monge-Ampère Equation in two dimensional space

The general solution to the Complex Monge-Ampère equation in a two dimensional space is constructed.

متن کامل

Normal forms for parabolic Monge-Ampère equations

We find normal forms for parabolic Monge-Ampère equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case, this equation is shown to have solutions. The other normal forms exhaust the different classes of parabolic Monge-Ampère equations with symmetry p...

متن کامل

Harnack Inequality for Time-dependent Linearized Parabolic Monge-ampère Equation

We prove a Harnack inequality for nonnegative solutions of linearized parabolic Monge-Ampère equations −t φt − tr((Dφ)Du) = 0, in terms of a variant of parabolic sections associated with φ, where φ satisfies λ ≤ −φt detDφ ≤ Λ and C1 ≤ −φt ≤ C2.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016